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(g) (h)

Figure 8.2: A complex narrative authored using CANVAS. (a) Robbers enter the bank

from the back door and begin incapacitating guards. (b) A robber fires a shot into the

air to intimidate the crowd. (c) A second robber coerces the a teller to (d) press a button

behind his desk to unlock the vault. (e) The robbers enter the manager’s office and coerce

the manager to unlock the door leading to the vault, while also pressing the second button

needed to unlock the vault door. (f) The robbers incapacitate the manager and open the

vault door. (g) The three robbers steal the money from the vault and (h) they escape by

running out the back entrance.
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Figure 8.3: Filling in an incomplete story specification. Automatically filled in parameters

are highlighted in orange.
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Figure 8.4: (a) A globally inconsistent story definition. CANVAS fills in missing param-

eters (orange) and inserts new story events (green) to automatically complete the story.

(b) CANVAS can automatically generate an entire story to satisfy a user-specified desired

outcome.
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Figure 8.5: A screenshot of the virtual world and Storycraft interface overlay.

Figure 8.6: Close-up view of the storytelling dialog from Figure 8.5 showing sentiment

and event selection.
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Chapter 9

Conclusions and Discussion

This hierarchy of systems – ADAPT, PAStE, and CANVAS/Storycraft – provides a pow-

erful, accessible, and extensible framework for creating and sharing stories taking place in

rich virtual worlds full of active and dynamic characters and objects. We solve the myriad

problems across the entire pipeline, from taking even the most vague story specifications

and translating them through fully defined narratives down to the individual frame-by-

frame joint angles and actuations of each individual virtual actor. Using this system, un-

trained authors can create narratives using a wide variety of different modalities, from a

strictly specified, fully-authored set of events, to a partially specified story high concept,

and even in an on-the-fly exploratory process requiring no prior designs or expectations.

This allows us to fully explore the ramifications of what a virtual world can be used for,

and how we can harness these rich digital spaces for meaningful communication of ideas.

One quality of this system worth emphasizing here is its focus on expansion and adapt-

ability. The underlying animation platform, ADAPT, is purpose-built for adding new ca-

pabilities to the system to improve the physical repertoire of the characters and objects

in the world. The PAStE system is designed to allow domain experts to easily expand

the ways in which they describe their characters and their relationships with each other
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and the world. CANVAS and Storycraft hinge entirely on the ability to create new and

interesting events for characters to exhibit intricate coordinated activity in interacting both

with each other and with their environment. Though for brevity we focus only on a bank

robbery scenario, this system or aspects of it have already been used to simulate city parks,

a virtual middle eastern marketplace, and adversarial situations like an interactive “prison

break” environment [74].

The core advantage of this system is the single architectural element around which

every aspect revolves – the event. This simple notion of collecting multi-object behavior

into a library of centralized, disposable control-flow data structures enables a number of

otherwise impossible tasks:

1. Complex coordination of difficult actions between large groups of individuals is

trivially reduced to a set of timed command dispatches. Rather than the tradi-

tional model of sensory perception and message passing between monolithic agents,

events enable a simple and lightweight method to temporarily augment actors with

all the behavior they need for a particular interaction on the fly.

2. Events present a new way of describing the world and what happens within it.

Where a traditional simulation or planning model would focus on atomic actions

within the repertoire of the characters (sit down, stand up, open the door), events

serve as atoms of narrative significance with functional purpose for furthering the

story (have a conversation, incapacitate a guard, break an alliance). Events exist

at the ideal level of action-space granularity to provide accessible metaphors to un-

trained authors charged with deciding what should happen in a story.

3. The parametric structure of events (in that actor and object participants are filled in

to an event’s role slots) provides a simple and effective way for authors to inten-

tionally under-specify stories without harming the system’s ability to resolve them.
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Events allow the author to focus on what happens in their story, while allowing the

system to decide who does it. In a traditional agent model, this would be far more

difficult to communicate to an author, if not impossible. And yet, it is a powerful

tool for planning flexibility both in rapid story prototyping, and in accommodating

interactive narrative where plans can be invalidated and require a new solution.

Designing the system around events fundamentally changes the way characters and objects

are controlled from more traditional models, and, as we have demonstrated, opens up new

opportunities for creating compelling and purposeful stories.

9.1 Future Directions

Real-time User Participants. The single most important avenue of expansion for this sys-

tem would be continued work exploring how a user participant can interact with the story

once an author has created it. Though we did not focus on this aspect in this project, pre-

vious work [74] demonstrates a proof of concept where a user can interact with a real-time

event planner to change the trajectory of a generated story. Our ideal scenario would be

a multi-user real-time Storycraft environment, where a Storycraft author dynamically dis-

patches events for the characters and objects in the world, and one or more real-time user

participants take part in those events and alter their outcome. We believe this collaborative

storytelling experience could be a powerful tool in education, training, and entertainment.

Accomplishing this would be more of a logistical challenge (developing a networked

multi-user synchronized story client) than a research problem. The real-time Storycraft

scenario lends itself well to real-time story participant interaction. Where currently the

human author of a Storycraft scenario selects events and simply waits for their execution,

a multi-user Storycraft scenario would consist more of the scenario author picking events

in response to the actions of the user participant. As the human participant interacts with
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the world, he or she moves the story state to different nodes in the story web, which alter

the suggestions presented by Storycraft to the scenario controller. The main conceptual

challenge would be that the participant’s action space would be that of affordances, while

the scenario author’s would be that of events. In terms of research problems we would

need to explore how to expand the story web exploration process to allow the human

participant to activate arbitrary affordances on objects in the world through their avatar

without moving the world state out of the precomputed story web.

Missing Events. Currently, the system is dependent on a pre-designed lexicon of exist-

ing events. CANVAS and Storycraft are both incapable of reaching certain world states

if the required event transitions do not exist. While automatically generating narratively-

contextualized world state transitions on the fly is well beyond the scope of our system, it

is conceivable for the system to suggest areas of the world state space that are difficult to

reach with the current lexicon of events. This would help guide domain experts towards

producing a broad and balanced repertoire of character actions. Additionally, this kind of

analysis could better inform situations where story planning fails if the system is able to

identify areas where hypothetical event additions could help.

Exploration and Optimization. General exploration of the Storycraft framework would

also greatly benefit this system. ADAPT, PAStE, and CANVAS are mature, fully-developed

frameworks while Storycraft exists in a more prototypical state. More efficient algorithms

for story web generation and exploration would allow Storycraft to accommodate bigger

stories in richer worlds with more events, actors, and objects to involve. GPU-based par-

allel processing has been incredibly promising in this regard, but some work remains to be

done in this endeavor. Additionally, a multi-author Storycraft system where different au-

thors are responsible for different parts of the populace would additionally mitigate some
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accessibility and complexity issues.

Evaluation and Iteration. Finally, these systems rely on iteration based on use-case

experience to reach their full potential. CANVAS and Storycraft are largely unique in their

author-centric purpose and approach, making them difficult to evaluate or compare against

any peer systems. However, evaluating users’ experience authoring real-world narrative

scenarios (outside of a purely academic environment) for education and training would

be incredibly insightful and allow for significant improvements in both the way end-users

interact with the system, and domain experts expand its capabilities. The complete system

has shown promise in our use of it, would benefit greatly from real-world application and

feedback.
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